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Abstract

Triangular discrimination, Jensen-Shannon divergence, and the square of the Hellinger distance,
are popular distance functions for mixture models, and are known to be similar. Here we expound
upon their equivalence in terms of their functional forms after transformations, factorizations,
and series expansions, and in terms of the geometry of their contours. The ratio between these
distances is nearly flat for modest ratios of point coordinates, up to about 4:1. Beyond that
the functions increase at different rates. We include derivations of ratio bounds, and some new
difference bounds. We provide some constructions that nearly achieve the worst-cases. These help
us understand when the different functions would give different orderings to the distances between
points.

Keywords: Mixture Models, Geometry, Distance Functions, Theory

1. Introduction

Mixture models are ubiquitous in statistics and their applications. Mixture models express quantities
whose components are positive and sum to one. They conveniently express a discrete probability
distribution for exclusion settings, where probabilities sum to one. They also express fractions of
a whole, e.g. they frequently arise after normalization. They are geometrically equivalent to points
lying on a regular simplex. See Appendix A for how a mixture model arises in one information
application.

A distance function measures how close two points are to one another. In clustering applications,
points that are close to each other based on this distance are grouped together. Nearest-neighbors
often play a special role. For a given point, different distance functions may give different orderings
to the other points, and different clusters may result.

Triangular discrimination, Jensen-Shannon divergence, and the square of the Hellinger distance,
are popular distance functions. There are others, but we focus on these three because they are known
to be similar. The literature and folklore contain some relations, but these provide limited insight
for the following reasons. The prior focus is on the most extreme results, worst case bounds, the
maximum and minimum ratio of one distance to another. These are often given as a list of algebraic
inequalities, without proof or even hints at reasons why the inequalities hold. We are interested
in understanding which sets of points give rise to these extremes, and what we should expect in
intermediate cases. We are interested in the geometry of the mappings underlying the functions,
and their series expansions. These provide insight into the form and relation of the functions across
all cases. Factorizations provides a simplification and parameterization of the bounds. Section 4.7
provides some new bounds on the difference between functions, i.e. D1 −D2.

These results provide some underpinnings for answering the question, “In what situations does
it matter which distance function you choose?” using first principles rather than anecdotal case
studies. That is, we explore the class of points for which the different distances would give different
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answers, e.g. to nearest-neighbor queries or constant-value contour constructions. One value of our
exposition is the algebraic decomposition of the functions into products of functions of one variable,
always valuable when working in high dimensions. Some of these bounds appear to be well known,
but we hope this is a useful geometric description, systematic treatment, and parameterization of
these bounds. Also we provide proofs from first principles that readers will find easy to reproduce,
something that appears to be currently missing in the literature.

2. Model

2.1 Mixture-Model Geometry
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Figure 1: Left, the domain of mixture models is the simplex T , the unit sphere is S, and the non-
negative part of unit sphere is S+. This figure for two-dimensions with coordinate axes 1
and 2. Center, point x on T projected to S+ under normalization (Euclidean) and square
root (Hellinger). Right, three-dimensional simplex T and S+ (cut-away).

Geometrically, mixture model points lie on a regular simplex T ; see Figure 1. Algebraically,
these are vectors with positive entries which sum to one. Let K denote the dimension of the model.
Let x denote a data point, with xk the kth coordinate of x. Then

T =

x :
K∑

k=1

xk = 1, and 1 ≥ xk ≥ 0

 .

T is a regular simplex in RK , the convex hull of the elementary vectors ek = {x : xk = 1, xj 6=k =
0}, ∀k ∈ [1,K].

For Hellinger and Euclidean (Cosine) distances, we map points from T to the unit K-sphere
S, specifically the closed section S+ of it bounded by the positive coordinate planes; see Figure 1.
Since zero coordinates map to zero coordinates, all the vertices, edges, etc. of T map to the expected
vertices, edges, etc. of S+. That is, if we treat T and S+ as simplicial complexes, with subsimplices
TI and S+I with xi∈I = 0 for all indicator sets of indices I, then both maps are isomorphisms from
sub-simplex TI to the expected sub-simplex S+I .

Algebraic methods such as non-negative matrix factorization produces output on S+. The range
of some other algebraic methods, such as LSA after normalization, is all of S. The cosine similarity
distance is naturally defined on all of S.
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2.2 Distance Properties

We desire distances D that satisfy these useful properties:

0. Unique Zero: D(x, y) ≥ 0, and D(x, y) = 0 if and only if x = y.

1. Max 1: D ≤ 1 and D(x, y) = 1 for some x, y ∈ T .

2. Symmetry: D(x, y) = D(y, x).

3. Triangle Inequality: D(x, z) ≤ D(x, y) +D(y, z).

4. Orthogonal Max: D(x, y) = 1 if x · y = 0.

(Properties 0–3 are numbered as a reminder to their meaning.) These properties are desired for a
variety of practical, theoretical, and historical reasons. Many of our distances satisfy all these except
for Triangle Inequality. Properties Unique Zero, Symmetry and Triangle Inequality are
required for a distance to be a metric. Property Max 1 means we want distances to be bounded; we
scale them to have a consistent maximum to facilitate comparisons. This is not required for metrics.
Scaled distances are subscripted by s.

Orthogonal Max implies that the distances between points on disjoint sub-simplices of T are
all equal. This is desirable from a mixture model perspective because such points are maximally
independent, hence their distances should be the largest possible and equivalent.

For many ideas that originally emerged without some of these properties, the statistics community
has developed versions which do. There are several interesting and popular pre-metrics that satisfy
some of these. For example, Kullback-Leibler (Kullback and Leibler, 1951) lacks symmetry, but
several versions of it have been “fixed.”

2.3 Inter-Distance Properties

Two distances D and F have (are)

• Bounded Difference: if c1 ≥ F (x, y)−D(x, y) ≥ 0 for some positive constant c1 < 1.

• Bounded Ratio: if F (x, y) ≥ D(x, y) ≥ c2F (x, y) for some positive constant c2.

• Order Preserving: if D(x, y) < D(x, z) ⇐⇒ F (x, y) < F (x, z).

For our distances, one of them is always greater than the other, so considering the absolute value of
the difference, i.e. |F (x, y)−D(x, y)|, provides no additional insight.

These properties are a way of relating one function to another. For example, Order Preserving
functions will produce the same k-nearest neighbor clusterings, provided the analogous distance
thresholds are picked. Cosine similarity interprets points as vectors from the origin, and measures
the cosine of the angle between two of them. If points are first normalized to S, cosine similarity and
Euclidean distance are Order Preserving, because the cosine of the angle and the chord length
between the points are both monotonic in the angle.

If D and F satisfy Max 1, then Bounded Ratio implies Bounded Difference with c1 = 1−c2,
since F −D = F (1−D/F ) ≤ 1(1− c2). But in the following we often show a smaller constant c1.

2.4 Distance Relation Summary

We define distances 4s, JS, and H2
s . We investigate them throughout the rest of the paper.

Figure 2 summarizes their relationships. Motivated by the same desire for a common framework for
comparison, Gibbs and Su (2002) provides a similar diagram.

Here 4s is scaled triangular discrimination, a variant of Chi-squared, χ2. JS is Jensen-Shannon
(a.k.a. half the Jeffreys Divergence), a form of Kullback-Leibler. H2

s is scaled and squared Hellinger,
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Figure 2: Distance metric taxonomy. Given our scaling, the top line shows a strict ordering of the
function values. Further, equality is achieved only at zero and one and we show non-trivial
bounded ratio and difference. The bottom two lines show that each of the three functions
can be factored into those four expressions, but with different Q and Z functions, and
different an and bn coefficients.

a variant of scaled Hellinger, Hs, and raw Hellinger, H. The inequalities denote componentwise
inequality, plus bounded ratio and bounded difference. The equations below the box for 4s, JS,
and H2

s denote alternative functional forms derived from factorization and series expansions.
These satisfy all of our useful properties, except for Triangle Inequality. Raw H does satisfy

Triangle Inequality. Figure 3 illustrates a few interesting examples of distance functions in three
dimensions.

These three are relative distances, meaning they depend on the ratio of the pair of points’
coordinates. Specifically, we show that each of the 4s, JS, and H2

s distances (generically D) can
be neatly factored into

D(x, y) =

∥∥∥∥p2Q(q)

∥∥∥∥
1

=

∥∥∥∥u2Z(z)

∥∥∥∥
1

= 1−
∥∥∥∥u2W (z)

∥∥∥∥
1

.

Here p = x + y is plus, d = x − y is difference and q = d/p is quotient; also u = max(x, y),
v = min(x, y), and z = v/u. Of course the Q,Z and W functions are different for each distance
function D, so we will subscript them by the particular D. Throughout this paper all operations on
vectors (e.g. d/p) are applied componentwise. Often the subscripts will be dropped on equations,
usually this will still mean that the equality holds componentwise; instead we will explicitly mention
it when equality only holds in the aggregate after taking norms. ‖ · ‖1 denotes the standard L-1
vector norm, and is not a componentwise operation; and | · | denotes componentwise absolute value.

Moreover, we will show that all the Q are similar: componentwise

Q(q) =

∞∑
n=1

anq
2n, 1 ≥ an > 0, an rapidly decreasing, andQ(0) = 0, Q(1) = 1.

All the Z are also similar: componentwise

Z(z) =

∞∑
n=2

bn(1− z)n, 1 ≥ bn > 0, bn decreasing, and Z(0) = 1, Z(1) = 0.

Z(z) = 1 + z −W (z), with Z and W monotonic and W (0) = 1,W (1) = 2.

For each of 4s, JS, and H2
s , the D, p2Q, and u

2Z functional forms are all componentwise equal; in
contrast D = 1 − ‖u2W‖1 only holds in aggregate after taking the 1-norm, i.e. Dk 6= 1 −Wk nor
1/K −Wk in general.
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In Section 3.3.2 we briefly contrast Hellinger to Eus, the Euclidean distance between mixture
model points after they have been projected to the unit sphere.

Functions of the form Df (x, y) = ‖xf(x/y)‖1 for convex functions f are known as f-divergences.
They were largely developed by Csiszár (Csiszár, 1967). Dragomir (2001) provides many theorems
about them, including noting that our family of functions are f-divergences. Jain and Srivastava
(2007) provides some symmetric variants of f-divergence distances, including our triangular discrim-
ination.

In particular, we have componentwise D(x, y) = xD(1, x/y) = yD(y/x, 1), hence Z(z) =
D(1, z) = D(z, 1). Similarly we show Q(q) = D(1 + q, 1 − q) = D(1 − q, 1 + q). We provide a
simple geometric interpretation of these forms using similar triangles in Section 4.1, Figure 7.

(1,0,0)
(0,1,0)

(0,0,1)

(0,0,1)

Distances 
from (1,0,0)

(0,1,0)

(0,0,1)

(1,0,0)

Distances 
from (.5,.5,0) Distances 

from (.2,.3,.5)

(0,0,1)

(0,1,0)

(1,0,0)

(1,0,0) (0,1,0)

(0,1,0)

(0,0,1)

(1,0,0)

(0,0,1) (1,0,0)

3-dimensional mixture model distances using Euclideanu (yellow + black contours), Hellingers (blue) and JSs (red)

(0,0,1)

(0,1,0)

(1,0,0)

Distances 
from (.89,.1,.01)

Figure 3: Comparison of Eus, Hellinger, and JSs distances on 3d mixture models. Note the similar-
ity between the contour lines for Hs and JSs, and how they contrast with those of Eu in
black. Bottom figures: the red arrow indicates the position of the point (0.89,.1,.01). Note
the steep slope for Hs and JSs as the line (1, 0, 0), (0, 0, 1) is approached, indicated by
the blue and red “walls” on the edges of their graphs, and their contours curving sharply
towards (0.89,.1,.01).
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3. Distance Definitions

3.1 Triangular Discrimination, 4s

The definition of the venerable Chi-Squared Test statistic (Pearson, 1900) is χ2 =
∑ (o−e)2

e where o
is the observed value and e is the expected value.

Most authors take o and e to be mixture model points, yielding χ2(x, y) = ‖(x− y)2/y‖1. Alter-
natively, e could be taken to be the average of all of the points, or the simplex center, which would
yield a univariate measure.

We fix the asymmetry to obtain the scaled triangular discrimination:

4s =
1

2

K∑
k=1

(xk − yk)2

xk + yk
=

1

2

∥∥∥∥∥ (x− y)2

x+ y

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥d2p
∥∥∥∥∥
1

.

Another derivation of 4s is to assume mixture model points are taken from the same population,
so the expected value is the average of the two points. That is 4s = χ2(x, (x+y)/2). For continuity
the kth term of the sum is defined to be 0 if xk + yk = 0.

We use this simple measure because it turns out to fit in the same geometric family as Jensen-
Shannon and Hellinger-squared.
4s obviously satisfies properties Unique Zero and Symmetry. Any term where yk = 0 reduces

to xk, so Max 1 and Orthogonal Max hold.
But 4s is too convex, in the sense that 4s(x, y) � 2 4s (x, x/2 + y/2), and does not satisfy

Triangle Inequality even when restricted to mixture models. E.g. x = [1, 0], z = [0, 1] and y =
[1/2, 1/2] has 4s(x, y) = 4s(y, z) = 1/3 and 4s(x, z) = 1. Normalizing points so that they lie on
the unit sphere S+ first helps make the function less convex, but not enough: e.g. if y = [1, 1]/

√
2

then 4s(x, y) = 0.379.

3.2 Jensen-Shannon Divergence

One information theory approach to distance is based on entropy and divergence. The derivation
starts with the Kullback-Leibler measure, KL, then modifies it for our useful properties, arriving at
the Jensen-Shannon Divergence, JS. This is also known as one-half of the Jeffrey Divergence.

KL(x, y) =
∥∥x log2(x/y)

∥∥
1

KL is non-symmetric in x and y, which motivates KLsym(x, y) =
∥∥x log2(x/y) + y log2(y/x)

∥∥
1
.

Despite w logw being reasonably well behaved near zero, having independent quantities inside the
log’s means KLsym,k is unbounded for xk = 0 xor yk = 0. Moreover, if xk = 0, it doesn’t matter
what value yk > 0 has, the k term always contributes the same amount, infinity. Indeed, it doesn’t
matter what any of the other yj 6=k or xj 6=k terms are! To “fix” this, we replace the denominator in
the log’s by the average of x and y:

JS = JSs =
1

2

∥∥∥∥x log2

2x

x+ y
+ y log2

2y

x+ y

∥∥∥∥
1

.

To make JS continuous xk log2
2xk

xk+yk
≡ 0 for xk = 0, since limw→0 w log2 w = 0.

This is a measure of relative distance, the difference between small component values is accen-
tuated non-linearly; see Figure 4 left. The constant factors inside the log’s were chosen so that
JSk = xk/2 for yk = 0, which provides Orthogonal Max and Max 1. If yk = xk then log2(1) = 0
which verifies Unique Zero. (It may not be obvious that JS ≥ 0, but it is, and can be seen from
some stronger results we prove later.) Symmetry holds by the symmetry of the functional form.

But JS does not satisfy Triangle Inequality, and is not fixed by normalizing the points to the
sphere. This can be verified using the same easy points as for 4s. Indeed, JS is even more convex
than 4s, as amplified in the following section.
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Δs (green) ≥ JSs(red) vs. (x-y) for (x+y)=c
Δs (blue) ≥ JSs(blue) vs. (x-y) for x=1 or y=0

(x-y)
di

st
an

ce

JSs surface, contour lines, and x+y=c lines

x

y

\TDs\

Figure 4: Left: one-dimensional JS. Right: comparison of the one-dimensional 4s and JS; for
constant x + y lines, 4s ≥ JS. Both plots range over the square. The square is the
domain of each component when K > 1.

3.3 Hellinger Distance

3.3.1 Minkowski and Euclidean

The well-known order p Minkowski distances are Mp(x, y) =
(∑
|xk − yk|p

)1/p
. Here Mp

u(x, y) =
Mp(x/||x||p, y/||y||p) measures the distance between the standard normalizations of x and y onto
S. M2

u = Eu(x, y) is Euclidean distance. Another common distance function, cosine similarity, is
simply E2

u(x, y). Hellinger can be viewed as Euclidean distance after a peculiar geometric mapping.

3.3.2 Hellinger

Our Hellinger distance is a discrete form of the Hellinger integral (Hellinger, 1909) defined for more
general spaces. Its use and form for our modern context was described by Blei and Lafferty (2007).

H2 =

K∑
k=1

(
√
xk −

√
yk)2

H2 means squaring after the sum, not componentwise: H =
(∑K

k=1(
√
xk −

√
yk)2

)1/2
.

We normalize H by a constant factor for property Max 1,

Hs =
H√

2
.

We observe that Hellinger (H) projects points from the simplex T to the spherical section S+

using the componentwise square root transformation, then takes standard Euclidean distance, which
is the chord length between transformed points. This is trivial but apparently not the way those
using it for mixture models think about it. This also constitutes a simple geometric proof that H
satisfies Triangle Inequality. The usual vector 2-norm normalization x/‖x‖2 also takes points to
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the sphere but is significantly different, e.g. it is a linear scaling of all components. When going
to the sphere, Hellinger expands straight-line-distances near the boundary of T , where ratios of
components are highest, whereas normalization modestly expands straight-line-distances near the
center of T . Both map the same sub-simplices of T to the obvious subsimplices of S+, and both
maps agree at sub-simplex centers. Some bounds on the difference of these projections are known.

It is obvious that H satisfies properties Unique Zero and Symmetry. Hs satisfies Orthogonal
Max. The algebraic argument is that, for orthogonal x and y, xk = 0 iff yk 6= 0, so

∑K
k=1(
√
xk −√

yk)2 =
∑K

k=1

√
xk

2 +
√
yk

2 = 2. For a geometric argument, take
√
x as the north pole of S, then

an orthogonal
√
y lies on the equator; all such point pairs are equidistant. Orthogonal x and y are

in disjoint sub-simplices of T ; the same holds for their projections onto S+.

Hs

 

surface, contour lines, and x+y=c

 

lines Hs

 

(blue)

 

and JSs

 

(red)

 

vs. (x-y)

 

for (x+y)=c, x=1

 

or y=0

y=0

x=
1

y=
0

x=
1

x+
y=

1/
4

x+
y=

1/
2

x+
y=

3/
4

x+
y=

1

x+y=5/4

x+y=3/2

x+y=7/4

x+
y=

1

x+y=3/2x+
y=

1/2

(x-y)

y

x

Figure 5: Left: one-dimensional Hs. Right: comparison of the one-dimensional Hs and JSs. This
provides little insight for higher dimensions, because Hellinger takes the square root after
summing all components.

4. Comparisons

Recall u = max(x, y) and v = min(x, y) with max and min and other vector operations taken
componentwise. Also p = x + y = u + v and d = |x − y| = u − v and q = d/p and z = v/u. For
components where x = y = 0 define q = 1 and z = 0. Note u = (p + d)/2 and v = (p − d)/2. For
componentwise ranges we have p ∈ [0, 2] and d, q, u, v, x, y, z ∈ [0, 1]. We have inequalities p ≥ d and
u ≥ v.

Theorem 1 (f-divergences) For distances4s, JS and H2
s (generically D) and a ≥ 0, D(ax, ay) =

aD(x, y) componentwise. This implies componentwise D(x, y) = u
2Z(z) and D(x, y) = p

2Q(q) with
Z(z) = 2D(1, z) and Q(q) = D(1 + q, 1− q).

Proof If u = 0 then x = y = 0 and p = 0. In this case it is trivial to check D = 0 (Unique Zero)
for each of the three functions. So assume u > 0 and p > 0. Verifying D(ax, ay) = aD(x, y) is a sim-
ple factorization exercise for each function. It implies D(x, y) = xD(1, y/x) = yD(x/y, 1). Consider
each component in turn, and, by symmetry, WLOG assume x ≥ y. Then xD(1, y/x) = uD(1, z)
and D(x, y) = (x+y)D(1/2+(x−y)/(2(x+y)), 1/2− (x−y)/(2(x+y))) = pD((1+q)/2, (1−q)/2).
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Hs
2 surface, contour lines, and x+y=c lines

Δs(green) ≥ JSs(red) ≥ H2
s (blue) vs. (x-y)

for (x+y)=c, x=1, or y=0

(x-y)

y

x

Figure 6: Left: one-dimensional H2
s . Right: comparison of the one-dimensional 4s, JS, and H2

s . In
Section 4.1 we show that the family of 4s, JS, H2

s triples of curves are all linear scalings
(and truncations) of a single triple of curves, the plots of the Q functions. In Section 4.3
we show that straight-lines from the origin to the x = 1 curve (the rightmost-edge of the
left figure) map out the surface. This x = 1 curve is the lower envelop of the curves on
the right, and is the Z function.

For our functions the restriction of the domain to the unit square can be ignored, so we can factor
out the 1/2 which provides the compact expression Q(q) = D(1 + q, 1− q).

What this means geometrically is straight-lines from the origin to the x = 1 (or y = 1) curve
map out the surface of the one-dimensional distance functions over the square; see Figure 7. The
slope of each line is related to the value of the Z-function (slope = Z(z)/

√
1 + z2) or Q-function

(slope = Q(q)
√

2/
√

1 + q2).

4.1 Functions of p and q

Here we examine the Q functions for each of4s, JS andH2
s . Figure 8 illustrates various relationships

between them.

Theorem 2 (Q-functions) Componentwise

4s =
p

2
Q4(q) and JS =

p

2
QJS(q) andH2

s =
p

2
QH(q)

where
Q4(q) = q2

QJS(q) =
1

2

(
(1 + q) log2(1 + q) + (1− q) log2(1− q)

)
QH(q) = 1−

√
1− q2
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Figure 7: Left, graph of one-dimensional JS highlighting the iso-z = iso-q lines, and the Q- and Z-
functions. Graphs for H2

s and4s are similar. The geometric interpretation of D(ax, ay) =
aD(x, y) in Theorem 1 is that the constant-x/y curves are straight lines. Right top, planar
view of the left graph, showing additional iso-u and iso-p lines. JS is a linear scaling of
the Z (or Q) curve along these iso lines. Right bottom, the distance at a point o can be
evaluated by translating it along its iso-z (iso-q) line to the Z (Q) curve. Geometrically, let
| · | denote the straight-line distance from a point to the left (0, 0) corner of the triangle in
the plane. Then linear scaling along iso-q (iso-z) lines and similar triangles yields D(o) =
(|o|/|o′|)D(o′) = (p/1)D(o′) = (p/2)Q(q) and D(o) = (|o|/|o′′|)D(o′′) = (u/1)D(o′′) =
(u/2)Z(z). (To clear up any confusion, the final 1/2 factor appears because the K-
dimensional distances (D) have an extra 1/2 normalization factor that the 1-dimensional
distances do not, and we defined Z and Q in terms of the 1-dimensional distances for
illustration purposes in this figure.)

and, for convenience, we list

Q′4 = 2q

Q′JS =
1

2

(
log2(1 + q)− log2(1− q)

)
Q′H =

q√
1− q2

Component-wise equality holds in all of the above. This implies equality after taking the 1-norm:
4s = ‖p2Q4(q)‖1, JS = ‖p2QJS(q)‖1 and H2

s = ‖p2QH(q)‖1.

Proof
Q4 is trivial. From Theorem 1, 2QJS = 2JS(1+q, 1−q) = (1+q) log2(1+q)+(1−q) log2(1−q).

2Q′JS = log2(1 + q) + (1 + q)/((1 + q) log 2) + (1 − q)/((1 − q) log 2) − log2(1 − q) = log2(1 + q) −
log2(1−q). From Theorem 1, QH =

(√
1 + q −

√
1− q

)2
/2 =

(
1 + q + 1− q − 2

√
(1 + q)(1− q)

)
/2

= 1−
√

1− q2.
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Figure 8: Graphs of relationships between the Q functions.

Remark 1 (linear scaling) All the D vs. d for p = pc (constant) curves in Figure 4 and Figure 6
are linear 1/pc scalings of the Q functions: D(x, y)/pc vs. (x − y)/pc ⇐⇒ Q(q) vs. q. For pc > 1
the functions are truncated at q = 2/pc − 1.

Proof This follows almost by definition: (x − y)/pc = d/p = q and D/pc = pQ/pc = Q. Note
the 1/2 factor is missing in the Q decomposition of D because the one-dimensional distance func-
tions plotted in the figures are normalized without it. The curves for pc > 1 are truncated at
d = 2−pc ⇐⇒ q = 2/pc−1 since x ≤ 1⇒ 1+y ≥ x+y = pc or y ≥ pc−1, so x−y ≤ x+1−pc ≤ 2−pc.
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Remark 2 (geometric Q) For a geometric interpretation see Figure 7. The Q curve and all its
translated scalings that lie on the distance function are perpendicular to the p = 1 (x + y = 1)
diagonal. In the figure, the following operations can be observed geometrically. Considering point
coordinates, o = ((p + d)/2, (p − d)/2) and o′ = ((1 + q)/2, (1 − q)/2) = o/p. Hence D(o) =
pD(o′) = (p/2)Q(q). In the same figure, the Z curve (section 4.3) and all its translated scalings are
perpendicular to the z = 0 (y = 0 if y < x) axis.

4.2 JS and H2
s via series in q

4.2.1 JS q-series

Using log2(·) = ln(·)/ ln(2), and the expansion ln(1 + r) =
∑∞

n=1
(−1)n+1rn

n , we get

2 ln 2QJS = (1 + q)

∞∑
n=1

(−1)n+1

n
qn − (1− q)

∞∑
n=1

1

n
(q)n

Recombining like powers of q

=

∞∑
n=1

(−1)n+1 − 1

n
qn +

∞∑
n=1

(−1)n+1 + 1

n
qn+1

=

∞∑
n=1

(−1)n+1 − 1

n
qn +

∞∑
m=2

(−1)m + 1

m− 1
qm

=

∞∑
n=2

(
(−1)n+1 − 1

n
+

(−1)n + 1

n− 1

)
qn

=

∞∑
n=2

(n− 1)(−1)n+1 − n+ 1 + n(−1)n + n

n(n− 1)
qn =

∞∑
n=2

(−1)n+2 + 1

n(n− 1)
qn

The numerator is zero if n is odd and 2 if n is even. Retaining the even terms and re-indexing gives

=

∞∑
n=1

1

n(2n− 1)
q2n

Thus

JSk(x, y) =
p

2

∞∑
n=1

1

n(2n− 1)2 ln 2
q2n (1)

=

(
1

4 ln 2

)
pq2 +

(
1

24 ln 2

)
pq4 +

(
1

60 ln 2

)
pq6 +

(
1

112 ln 2

)
pq8 +

(
1

180 ln 2

)
pq10 + · · ·

≈ 0.361pq2 + 0.060pq4 + 0.024pq6 + 0.013pq8 + 0.008pq10 + · · ·

Note the sum of the coefficients is 0.5 by Max 1 and
∑

k pk = 2, where d = p for orthogonal x
and y components.

Note that the leading term of the JS series expansion is the same as 4s, up to a small constant
factor. JS is an interesting mix of absolute and relative difference. Consider pq2n = dq2n−1, so
in contrast to pure relative difference d/p, JS weights the relative difference more if the absolute
difference is large;

12
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4.2.2 H2
s q-series

Using the expansion
√

1 + r =
∑∞

n=0
(−1)n(2n)!

(1−2n)(n!)24n r
n with r = −q2 gives

QH = 1−
∞∑

n=0

(−1)n(2n)!

(1− 2n)(n!)24n
(−1)nq2n =

∞∑
n=1

(2n)!

(2n− 1)(n!)24n
q2n

Therefore componentwise

H2
s =

p

2

∞∑
n=1

(2n)!

(2n− 1)(n!)24n
q2n (2)

=

(
1

4

)
pq2 +

(
1

16

)
pq4 +

(
1

32

)
pq6 +

(
5

256

)
pq8 +

(
7

512

)
pq10 + · · ·

≈ 0.2500pq2 + 0.0625pq4 + 0.0312pq6 + 0.0195pq8 + 0.0137pq10 + · · ·

Note the coefficients of the larger powers are bigger than for the JS series, which is illustrated
by the larger curvature in Figure 6 right.

4s, JS and H2
s have similar behavior, but through different operations and of different order.

4s is a simple ratio of powers, JS uses log2, and H2
s uses

√
. If yk = 0, then the kth component

of 4s, JS, and H2
s are all equal to xk/2. The contours (iso-value lines) for all three have similar

shape. See Figure 3.

4.3 Functions of u and z

Here we describe the Z functional forms for 4s, JS and H2
s . We also introduce W (z) functions.

Figure 9 illustrates various relationships between the Z-functions for different distances.

Theorem 3 (Z-functions) Componentwise

4s =
u

2
Z4(z) and JS =

u

2
ZJS(z) andH2

s =
u

2
ZH(z)

where

Z4(z) =
(1− z)2

1 + z
= 1 + z − 4z

1 + z

ZJS(z) = 1 + z − (1 + z) log2(1 + z) + z log2 z

ZH(z) = 1 + z − 2
√
z

and for convenience we list

Z ′4 = 1− 4

(1 + z)2
=

(z + 3)(z − 1)

(1 + z)2

Z ′JS = 1− log2(1 + z) + log2(z) = 1− log2(1 + z−1)

Z ′H = 1− 1√
z

As for the Q functions, all of the above holds componentwise and implies equality after taking
1-norms.
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Figure 9: Graphs of relationships between the Z functions.

Proof We use Z(z) = 2D(1, z) from Theorem 1.
For 4s we have 24s (1, z) = (1 − z)2/(1 + z) =

(
(1 + z)2 − 4z

)
/(1 + z) = 1 + z − 4z/(1 + z).

Also Z ′4 = (−2(1− z)(1 + z)− (1− z)2)/(1 + z)2 = (z2 + 2z− 3)/(z+ 1)2 = (z+ 3)(z− 1)/(z+ 1)2.

2JS(1, z) = log2

2

1 + z
+z log2

2z

1 + z
= (1+z) log2

2

1 + z
+z log2 z = 1+z−(1+z) log2(1+z)+z log2 z.

Also Z ′JS = 1− (1 + z)/((1 + z)(log 2))− log2(1 + z) + z/(z log 2) + log2 z = 1− log2(1 + z) + log2(z)
= 1 + log2(z/(1 + z)) = 1− log2((1 + z)/z) = 1− log2(1 + z−1).

For H2
s , we have 2H2

s (1, z) = (1−
√
z)2 = 1 + z − 2

√
z. And Z ′H is trivial.

The leading (u/2)(1 + z) = (x+ y)/2 terms always sum to 1 over all the components of mixture
models, so we have a concise expression of how much each of these measures is less than 1.
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Corollary 4

4s = 1− ‖u
2
W4(z)‖1 = 1− ‖u

2

4z

1 + z
‖1

JS = 1− ‖u
2
WJS(z)‖1 = 1− ‖u

2
(z log2 z − (1 + z) log2(1 + z))‖1

H2
s = 1− ‖u

2
WH(z)‖1 = 1− ‖u

2
(2
√
z)‖1

The leftmost equality is not componentwise equality. E.g. H2
sk 6= 1/k − uk

√
zk in general.

Proof In this proof we use subscripts k to emphasize that keeping track of individual com-
ponents is important. ‖u2Z(z)‖1 =

∑K
k=1 |

uk

2 (1 + zk −W (zk))|. We first note that 1 + zk ≥
W (zk) ≥ 0 so we can remove the absolute value sign. The argument for this is that each com-
ponent of the original distance functions is non-negative (since the distance functions are dis-
tances over all of RK

+ and not just mixture models) and equal to the Z functions. Each of the
W are non-negative. Thus we may drop the absolute values and separate the sum into two
giving ‖u2Z(z)‖1 =

∑K
k=1

uk

2 (1 + zk) −
∑K

k=1W (zk). The first sum is 1 because it is merely∑K
k=1 (uk + vk)/2 =

∑K
k=1 (xk + yk)/2 and our domain is mixture models.

4.4 4s, JS and H2
s via series in z

Here we provide series expansions for our functions in z, about the point z = 1. For each we define
r = 1 − z, and each series contains integer powers of r starting with 2. We make use of 1 − r = z,
2− r = z + 1, and 1 ≥ r ≥ 0.

4.4.1 4s z-series

Z4 =
(1− z)2

1 + z
= r2

(
1

2− r

)
=
r2

2

(
1

1− r/2

)
=

∞∑
n=0

rn+2

2n+1
=

∞∑
n=2

rn

2n−1

Thus

4s(x, y) = u

∞∑
n=2

rn

2n
(3)

=

(
1

4

)
ur2 +

(
1

8

)
ur3 +

(
1

16

)
ur4 +

(
1

32

)
ur5 +

(
1

64

)
ur6 + · · ·

= 0.25ur2 + 0.125ur3 + 0.0625ur4 + 0.03125ur5 + 0.015625ur6 + · · ·

4.4.2 JS z-series

ZJS has two log terms:

z log z = (1− r) log2(1− r) = −1− r
ln 2

∞∑
n=1

rn

n
and

(1 + z) log(1 + z) = (2− r) log2(2− r) =
(2− r)

ln 2
(ln 2 + ln(1− r/2)) = 2− r +

2− r
ln 2

ln(1− r/2)

where ln(1− r/2) = −
∞∑

n=1

rn

n2n
.
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The 2− r in the second term cancels the leading 2− r (i.e. 1 + z) in ZJS , yielding

ZJS =
2− r
ln 2

∞∑
n=1

rn

n2n
− 1− r

ln 2

∞∑
n=1

rn

n
=

1

ln 2

∞∑
n=1

(
rn

n2n−1
− rn

n

)
+

1

ln 2

∞∑
n=1

(
−rn+1

n2n
+
rn+1

n

)
.

The first sum is zero for n = 1. Letting m = n+ 1 in the second sum we have

=
1

ln 2

∞∑
n=2

rn

n

(
1

2n−1
− 1

)
+

1

ln 2

∞∑
m=2

−rm

m− 1

(
1− 1

2m−1

)
=

1

ln 2

∞∑
n=2

rn
(

1− 1

2n−1

)(
1

n− 1
− 1

n

)
Thus

JS(x, y) =
u

2 ln 2

∞∑
n=2

rn
(

1− 1

2n−1

)
1

n(n− 1)
(4)

=

(
1

8 ln 2

)
ur2 +

(
3

48 ln 2

)
ur3 +

(
7

192 ln 2

)
ur4 +

(
15

640 ln 2

)
ur5 +

(
31

1920 ln 2

)
ur6 + · · ·

≈ 0.1803ur2 + 0.0902ur3 + 0.0526ur4 + 0.0338ur5 + 0.0233ur6 + · · ·

4.4.3 H2
s z-series

ZH = 1+z−2
√
z = 2−r−2

√
1− r = 2−r−2

1− r

2
+

∞∑
n=2

rn

n!

n∏
m=1

(m− 3/2)

 = −2

∞∑
n=2

rn
n∏

m=1

m− 3/2

m

Thus

H2
s (x, y) = −u

∞∑
n=2

rn
n∏

m=1

m− 3/2

m
(5)

=

(
1

8

)
ur2 +

(
1

16

)
ur3 +

(
5

128

)
ur4 +

(
7

256

)
ur5 +

(
63

3072

)
ur6 + · · ·

≈ 0.125ur2 + 0.0625ur3 + 0.0391ur4 + 0.0273ur5 + 0.0205ur6 + · · ·

This series converges slowly for r close to 1, i.e. z near 0.

4.5 Z and Q Equivalence and Analysis

The different forms Z, Q, and W merely provide convenient alternatives for intuition, proofs, and
perhaps applications. The Z and Q functions are very similar in form, as can be seen from the
plots. Algebraically they are related in the following way. Componentwise equality with the original
distance function means p

2Q(q) = u
2Z(z). Since q = (1 − z)/(1 + z) and p = u(1 + z), also

z = (1− q)/(1 + q) and u = p(1 + q)/2, we have the following theorem.

Theorem 5 (Z-Q-same)

Z(z) = (1 + z)Q

(
1− z
1 + z

)

Q(q) =
1 + q

2
Z

(
1− q
1 + q

)
Corollary 6 Z decreasing ⇒ Q increasing; also Z decreasing ⇐ Q′(q) > 1

1+qQ(q) ≥ 0.
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Proof Z decreasing means ∀z1 < z2, Z(z1) > Z(z2). Since Z(z) = (1 + z)Q((1 − z)/(1 + z)) we
have

Q

(
1− z1
1 + z1

)
>

1 + z2
1 + z1

Q

(
1− z2
1 + z2

)
> Q

(
1− z2
1 + z2

)
where q1 = 1−z1

1+z1
> 1−z2

1+z2
= q2. Since the mapping between z and q is a continuous isomorphism

this inequality holds for arbitrary q1 > q2. For the other direction, Z decreasing ⇐⇒ Q(q1) >
1+z2
1+z1

Q(q2) = 1+q1
1+q2

Q(q2). We manipulate this inequality to get it into derivative form,

Q(q1)−Q(q2)

q1 − q2
>

(
1 + q1
1 + q2

− 1

)
Q(q2)/(q1 − q2) =

(
q1 − q2
1 + q2

)
Q(q2)/(q1 − q2) =

1

1 + q2
Q(q2).

This holds always if it holds in the limit as q1 → q2, or Q′(q) > 1
1+qQ(q).

The stronger requirement for Q′ is necessary; e.g. Q = 1+ q/2 implies Z = (1+z)(1+(1−z)/(2(1+
z))) = 3/2 + z/2, so here is an example where both Q and Z are increasing. Geometrically what
is happening is that a constant z (or q) ray from the origin first intersects the p = 1 line, then the
u = 1 line. Recall D is rising linearly along this ray. For smaller values of q, the p and u lines
are farther apart, so D increases more. For example, a flat Q(q) = 1 function implies an increasing
Z(z) = 1 + z function.

Theorem 5 and Corollary 6 hold generically for functions with D(ax, ay) = aD(x, y). We now
turn to our particular functions, and show that the decreasing/increasing conditions hold in the half-
open interval q ∈ (0, 1] (or z ∈ [0, 1) ), and they are flat at the excluded end point, i.e. Q′(0) = 0
and Z ′(1) = 0.

Theorem 7 (Z-decreasing) Z4(z), ZJS(z), and ZH(z) are all strictly decreasing in [0, 1), with
zero derivative at z = 1. Note Z ′4(0) = −3, but Z ′JS(0) = −∞ and Z ′H(0) = −∞.

Proof We can check Z ′ < 0 and the values at 0 and 1 directly from the formulas: Z ′4 = (z+3)(z−1)
(1+z)2 ,

all factors positive except z−1; Z ′JS = 1− log2(1+z−1) < 0 ⇐⇒ 2 < 1+z−1; and Z ′H = 1−z−1/2.
All these check out for 0 ≤ z < 1.

Corollary 8 (Q-increasing) Q4(z), QJS(z), and QH(z) are all strictly increasing in (0, 1], with
zero derivative at q = 0. Note Q′4(1) = 2, but Q′JS(1) =∞ and Q′H(1) =∞.

Proof Increasing in (0, 1] follows from Corollary 6. Derivative values at 0 and 1 can be checked

using Q′4 = 2q. 2Q′JS = log2(1 + q)− log2(1− q), and log2(1− q) < 0 for q > 0. Q′H = q/
√

1− q2.

For our three functions, a more complicated but straight-forward alternative is to show Q is
increasing then check the stronger derivative conditions from Corollary 6.

Theorem 9 (Q-increasing-alt) Q4(z), QJS(z), and QH(z) are all strictly increasing in (0, 1],
with zero derivative at q = 0. Note Q′4(1) = 2, but Q′JS(1) =∞ and Q′H(1) =∞.

Proof Positive derivatives follow directly from the formulas. Q′4 = 2q. 2Q′JS = log2(1 + q) −
log2(1− q)/2, and log2(1− q) < 0 for q > 0. Q′H = q/

√
1− q2.

Corollary 10 (Z-decreasing-alt) Z4(z), ZJS(z), and ZH(z) are all strictly decreasing in [0, 1),
with zero derivative at z = 1. Note Z ′4(0) = −3, but Z ′JS(0) = −∞ and Z ′H(0) = −∞.
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Proof Relying on Theorem 9 we check the conditions of Corollary 6. Recall Q4 = q2 and Q′4 = 2q.

Then Q′4 > Q4/(1 + q) ⇐⇒ 2q > q2/(1 + q) ⇐⇒ 2q(1 + q) > q2 ⇐⇒ q 6= 0 and 2 > q.

Recall QJS =
(
(1 + q) log2(1 + q) + (1− q) log2(1− q)

)
/2 and Q′JS = (log2(1 + q)− log2(1− q))/2.

Then Q′JS > QJS/(1 + q) ⇐⇒ log2(1 + q) − log2(1 − q) > log2(1 + q) + 1−q
1+q log2(1 − q) ⇐⇒

0 >
(

1−q
1+q + 1

)
log2(1 − q). The first factor is positive and the second is negative for q < 1. Recall

QH(q) = 1 −
√

1− q2 and Q′H = q/
√

1− q2. Then Q′H > QH/(1 + q) ⇐⇒ q(1 + q) > (1 −√
1− q2)

√
1− q2 =

√
1− q2 − 1 + q2 ⇐⇒ 1 + q >

√
1− q2, which is true for q > 0 since the left

side is increasing and the right is decreasing.

Values at 0 and 1 can be checked by recalling Z ′4 = (z+3)(z−1)
(z+1)2 , Z ′JS = 1 − log2(1 + z−1), and

Z ′H = 1− z−1/2.

Theorem 11 Z1

Z2
decreasing ⇐⇒ Q1

Q2
increasing. Moreover maxZ1/Z2 = maxQ1/Q2 and minZ1/Z2 =

minQ1/Q2

Proof Componentwise equality implies D1

D2
= Z1

Z2
(z) = Q1

Q2

(
q = 1−z

1+z

)
and max and min are pre-

served at z = 0 and z = 1 (where q = 1 and q = 0).

We next describe some bounds limiting how much these functions vary from one another. Then
we give some examples where these bounds are nearly achieved.

4.6 Ratios of 4s, JS and H2
s

We start with describing linear bounds between the functions. Tighter bounds apply in a variety
of situations. Many of these linear bounds are already known. For example the following lower
bounds are stated in Jain and Srivastava (2007) without reference or proof. We hope providing
straightforward descriptions and simple proofs here are helpful. In addition, the parameterization
of the ratios by q and z, their monotonicity in these parameters, and geometrically describing their
curves appears novel. Figure 10 summarizes the results of this section.

Q∗ q∗ Z∗ z∗

H2
s /4s 1/2 = .500 0 1/2 = .500 1

JS/4s 1/2 log 2 > .721 0 1/2 log 2 > .721 1
H2

s /JS log 2 > .693 0 log 2 > .693 1
max is 1 at q = 1 and z = 0

Figure 10: Q∗ and Z∗ are the infimums of ratios between Q and Z functions, and q∗ and z∗ are the
limit points where this is achieved. These results are exact.

Bounds on the ratio of Q (or Z) functions implies bounds on the ratio of actual distance functions

D. If 1 ≥ Q1/Q2 ≥ a componentwise, then 1 ≥ maxk
D1,k

D2,k
≥ ‖D1‖1
‖D2‖1 ≥ mink

D1,k

D2,k
= a.

Theorem 12 (Ratio bounds JS/4s, H
2
s /4s, and H2

s /JS)

1 ≥ H2
s

4s
≥ 0.5

1 ≥ JS

4s
≥ 1

2 log 2
, note 1/2 log 2 > 0.721.
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1 ≥ H2
s

JS
≥ log 2, note log 2 > 0.693.

The maximum ratio of 1 is achieved exactly when x ·y = 0, and the minimum ratio is approached
as x→ y.

Moreover ZH

Z4
(z), ZJS

Z4
(z) and ZH

ZJS
(z) are decreasing ⇐⇒ QH

Q4
(q), QJS

Q4
(q) and QH

QJS
(q) are in-

creasing.

Proof Recall componentwise D1

D2
(x, y) = Z1

Z2
(z) = Q1

Q2
(q) so an upper or lower bound in the ratio of

a component bounds the ratio of the one-norms of all components.
JS/4s = 1/2 ln 2 + q2/12 ln 2 + q4/30 ln 2 + · · · . This is obviously an increasing function of q,

with value 1/2 log 2 at q = 0. At q = 1, recall the sum of the terms is 1 by property Max 1 for JS.
The same argument holds for H2

s /4s = 1/2 + q2/8 + q416 + · · · .
One can also prove limits on ZH/Z4 directly without recourse to series. ZH/Z4 = (1 + z)(1−√

z)2/(1− z)2. Let w =
√
z and note (1−w2) = (1 +w)(1−w). So ZH/Z4 = (1 +w2)(1−w)2/(1−

w2)2 = (1 + w2)/(1 + w)2 = f(w). And f ′(w) =
(
2w(1 + w)2 − (1 + w2)2(1 + w)

)
/(1 + w)4 =

2(w − 1)/(1 + w)3. This is < 0 for w < 1.
For H2

s /JS, one might be tempted to consider the series expansions as well, but proving mono-
tonicity from the two series is not so obvious.

It is easier for us to turn to the Z functions:

R(z) =
ZH

ZJS
=

(1 + z − 2
√
z)

(1 + z − log2(1 + z)− z log2(1 + z−1))
.

We first evaluate R at its limits and then show it is decreasing.
We already know ZH(0) = ZJS(0) = 1 so R(0) = 1.
For R(1), switching to Q and using the series expansions, after factoring out pq2, the first terms

give QH

QJS
(0) = 1/2

1/2 ln 2 = ln 2. Some readers may find it instructive to consider that the leading q2

terms also informs us of how many derivatives are required in a direct argument: limz→1
ZH

ZJS
=

1+1−2
1+1−1−1 = 0

0 . Invoking L’Hôpital’s rule we have limz→1
Z′H
Z′JS

= 1−z−1/2

1−log2(1+z−1) = 0
0 . So invoking it

again we get limz→1
Z′′H
Z′′JS

=
1
2 z
−3/2

z−2

ln 2(1+z−1)

= 1/2
1/(2 ln 2) = ln 2.

We now show that R is decreasing through repeated differentiation and checking values at z = 0
and 1 to eventually show that all the derivatives have the correct sign.

Using 1 + z−1 = (1 + z)/z we rewrite ZJS = 1 + z − (1 + z) log2(1 + z) + z log2 z.
R′(z) = (1−z−1/2)(1+z−(1+z) log2(1+z)+z log2 z)−(1+z−2z1/2)(1−log2(1+z)+log2 z)/Z

2
JS .

Ignoring the positive denominator, we expand and cancel 1 + z − (1 + z) log2(1 + z) terms to get
sgn(R′(z)) = sgn(R′1(z)), where R′1(z) = z log2 z−z−1/2−z1/2+z−1/2(1+z) log2(1+z)−z1/2 log2 z−
(1 + z) log2(z) + 2z1/2 − 2z1/2 log2(1 + z) + 2z1/2 log2 z. Combining like log terms, and noting
z1/2−z−1/2 = z−1/2(z−1) we have sgn(R′(z)) = (z1/2−1) log2 z+z−1/2(z−1)(1− log2(1+z)). We
change variables with w =

√
z yielding R′(w) = 2(w−1) log2(w)+w−1(w2−1)(1−log2(w2+1). Since

we already know R(w = 1) and R(w = 0) we can restrict to w ∈ (0, 1). Since w2−1 = (w+1)(w−1),
multiplying by w/(w − 1) < 0 gives sgn(R′(w)) = − sgn(R′2(w)) where R′2(w) = 2w log2(w) + (w +
1)(1− log2(w2 + 1)).

Our goal is now to show R′2(w) ≥ 0. Note R′2(0) = 0 + 0 + 1 = 1 and R′2(1) = −2 + 0 + 2 = 0.
So it suffices to show R′2 is monotonic, i.e. R′′2 ≤ 0.

R′′2 = (1 + 2/ log 2) − 2w(w + 1)/((1 + w2) log 2) + log2(w2/(1 + w2)) after simplification. Note
R′′2 (w → 0) = −∞ and R′′2 (1) = 1 + 2/ log 2− 4/2 log 2 + log2(1/2) = 0. So it again suffices to show
R′′2 is monotonic, i.e. R′′′2 ≥ 0.

R′′′2 = 2(w2 − 2w − 1)/((1 + w2)2 log 2) + 2/(w(1 + w2) log 2). Since we are only interested in
the sign, we drop the common positive 2/((1 +w2) log 2) factor and simplify, sgn(R′′′2 ) = sgn(R′′′3 ) =
(w3−w2−w+1)/(w(1+w2)). Dropping the new positive denominator we get sgn(R′′′2 ) = sgn(R′′′4 ) =
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w3 −w2 −w+ 1 = (1−w)(1−w2) ≥ 0, which was the goal. Going back up the chain of derivatives
shows that each is monotonic and always has the correct sign.

Note that the relative difference bounds and curves in Figure 9 and Figure 8 follows directly
from the ratio bounds.

4.7 Differences between 4s, JS and H2
s

Recall from Section 2.3 that bounds on ratios implies bounds on differences, namely 1 ≥ d1/d2 ≥
c⇒ (1−c) ≥ d2−d1 ≥ 0. But here we prove tighter bounds on differences for the Z and Q functions.
See Figure 8 and Figure 9. Figure 11 summarizes the results of this section.

Q∗ q∗ Z∗ z∗ R bound

F4 − FH 1/4 =
√

3/2 ≈ .270 .087 .5
.250 .866

F4 − FJS .110 .807 .122 .127 .279
FJS − FH .150 .912 .158 .055 .307

min is 0 at q = 0, q = 1, z = 0, and z = 1

Figure 11: Q∗ and Z∗ are the maximum difference between components of Q and Z functions, q∗

and z∗ are points near where this is achieved, and ”R bound” is the weak bound on Q∗

and Z∗ implied by the ratio bounds. Except for the upper left, the results are not exact,
but the actual maximum difference is provably ≤ Q∗ (≤ Z∗).

Bounds on the difference in Q functions implies bounds on the difference in actual distance
functions D. Componentwise, given (Q1 −Q2) < a, then since the difference between distances is a
linear scaling of differences in Q, we have that componentwise 0 ≤ D1 −D2 ≤ p

2 (Q1 −Q2) ≤ ap/2.
Taking the 1-norm and noting that for our functions componentwise D1 − D2 ≥ 0, we have 0 ≤
‖D1‖1 − ‖D2‖1 = ‖D1 −D2‖1 ≤ a‖p/2‖1 = a.

The same argument applies for Z. (The only difference is b‖u/2‖1 ≤ b, not necessarily equality.)
So whichever constant is smaller provides a tighter bound. In our case, the Q bound is always
smaller, which is always the case f-divergences. Geometrically, the bound is the maximum difference
in height for a constant q (or z) ray from the origin traveling on two different D functions; see
Figure 7. For f-divergences these rays monotonically and linearly spread vertically as they travel,
and they pass the p = 1 curve defining the Q functions before they hit the u = 1 curve defining the
Z functions.

Define MQ12 ≡ Q1 −Q2 and MZ12 ≡ Z1 − Z2. Except in one case, we are unable to provide a
closed form solution to a bound for these M functions. Instead, we provide numeric proofs of the
following form. We show analytically that M ′′ < 0 in an open interval, and M ′′ > 0 in the open
complement of that interval, with a single point at their shared boundary where M ′′ = 0. Hence
there is a unique maximum in the interval. We find a bound on that maximum numerically. We
find two points to either side of the maximum, and the ordinate of the intersection of their tangent
lines bounds the maximum Q∗ (Z∗). We compute this maximum, accounting for possible round-off
error, and report it as a ”provable” maximum value. The abscissa of the intersection point provides
an approximation to the point q∗ (z∗) at which the true maximum occurs. We try to get points
close to q∗ through a binary search. Although other search and bounding means are undoubtedly
more efficient, the functions are well behaved enough that this approach suffices.

Theorem 13 (Q4 −QH) ≤ 1/4, with equality at q =
√

3/2.
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Proof MQ4H = q2 − 1 +
√

1− q2 =
√

1− q2(1 −
√

1− q2). Let w =
√

1− q2, we have
MQ4H = w(1− w) and MQ′4H = 1− 2w. The maximum occurs at w = 1/2 ⇐⇒ q =

√
3/2 and

has value 1/4.

Lemma 14 (Q4 −QJS)′′ < 0 for q ∈ (q0, 1) and > 0 for q ∈ (0, q0) with q0 ≈ 0.53.

Proof MQ′4J = 2q − (log2(1 + q)− log2(1− q))/2. MQ′′4J = 2− (1/(1 + q) + 1/(1− q))/(2 log 2).

Therefore MQ′′4J < 0 ⇐⇒ 4 log 2 < 1/(1+q)+1/(1−q) = 2/(1−q2) ⇐⇒ q > (1−1/2 log 2)1/2 =
q0 ≈ 0.53.

Lemma 15 (QJS −QH)′′ < 0 for q ∈ (q0, 1) and > 0 for q ∈ (0, q0) with q0 ≈ 0.72.

Proof MQ′JH = (log2(1+q)−log2(1−q))/2−q/
√

1− q2. MQ′′JH = (1/(1+q)+1/(1−q))/(2 log 2)−
(1− q2)3/2 = (1− q2)−1/ log 2− (1− q2)3/2. Therefore MQ′′JH < 0 ⇐⇒

√
1− q2 < log 2 ⇐⇒ q >√

1− log2 2 = q0 ≈ 0.72.

Lemma 16 (Z4 − ZH)′′ < 0 for z ∈ (0, z0) and > 0 for z ∈ (z0, 1) with z0 ≈ 0.24.

Proof MZ ′4H = −4/(1 + z)2 + z−1/2. MZ ′′4H = 8/(1 + z)3 − z−3/2/2. Therefore sgn(MZ ′′4H) <

0 ⇐⇒ 16z3/2 < (1 + z)3 ⇐⇒ 2 3
√

2
√
z < 1 + z. Letting w =

√
z and solving via the quadratic

formula we have ⇐⇒ w < 3
√

2−
√

3
√

4− 1⇐ z < 0.24.

Lemma 17 (Z4 − ZJS)′′ < 0 for z ∈ (0, z0) and > 0 for z ∈ (z0, 1) with z0 ≈ 0.31.

Proof MZ4J ′ = −4/(1+z)2+log2(1+z−1) and MZ4J ′′ = 8/(1+z)3−1/(z(z+1) log 2). Therefore
MZ4J ′′ < 0 ⇐⇒ z2+(2−8 log 2)z+1 > 0. Solving via the quadratic formula with b = (2−8 log 2)

we have ⇐⇒ z < b/−
√
b2/4− 1 = z0 ≈ 0.31

Lemma 18 (ZJS − ZH)′′ < 0 for z ∈ (0, z0) and > 0 for z ∈ (z0, 1) with z0 ≈ 0.16.

Proof
From Theorem 3 we have MZJH = (ZJS − ZH) = − log2(1 + z) − z log2(1 + z−1) + 2

√
z and

MZ ′JH(z) = − log2(1 + z−1) + z−1/2.
Log functions (base 2 and of 1 + z) can cross square-root functions multiple times, so it is very

helpful to recourse to MZ ′′JH to avoid these difficulties.
MZ ′′JH = 1

z(1+z) log 2 −
1

2z3/2 . Note 1
z(1+z) log 2 −

1
2z3/2 > 0 ⇐⇒ 1

z(1+z) log 2 > 1
2z3/2 ⇐⇒

z(1 + z) log 2 < 2z3/2 ⇐⇒ (1 + z) log 2 < 2z1/2. Since z > 0, we may square both sides, ⇐⇒
(1 + z)2 < 4

log2 2
z ⇐⇒ z2 + 2z− 4

log2 2
z+ 1 < 0. Note sgn(f ′′) = sgn(−z2 + 2( 2

log2 2
−1)z−1). Using

the quadratic formula the zeros are 2c− 1± 2
√
c2 − c where c = 1/ ln2 2 = {z0, z1} ≈ {0.162, 6.163}.

Thus MZJH has a single inflection point in (0, 1) at z0. It is easy to verify numerically that
MZ ′′JH(z : z < z0) < 0 and MZ ′′JH(z : 1 ≥ z > z0) > 0.
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4.8 Contours of 4s, JS and H2
s

4.8.1 Not Order Preserving Examples.

Measures 4s, JS, H2
s (hence Hs) are not order preserving, yet their contours (constant-value sets)

are similar.

Examples of order being switched can be generated by exploiting the different curvatures in
Figure 3 bottom or the different coefficients in the series expansions. For x = [0.89, 0.10, 0.01],
y = [0.9, 0, 0.1], and z = [0.65, 0.35, 0], we have (4s(x, y) = 0.087) < (4s(x, z) = 0.093) but
(JS(x, y) = 0.081) > (JS(x, z) = 0.072) and (H2

s (x, y) = 0.073) > (H2
s (x, z) = 0.052). Changing

z to [0.6, 0.4, 0], we have (JS(x, y) = 0.081) < (JS(x, z) = 0.095) but (H2
s (x, y) = 0.073) >

(H2
s (x, z) = 0.069).

Recall none of 4s, JS, or H2
s obey the triangle inequality.

4.8.2 Worst-Case Contour Construction

Here we demonstrate where these ratio bounds may be nearly achieved. As before, equality is
achieved when all functions are 1, at x · y = 0.

The following construction nearly achieves the extremes of the inequality bounds for a single
contour. Let x = (a, a, ...a, b, b, ...b, 0) where a = 1/(k − 1) + ε and b = 1/(k − 1) − ε. Let
y = (b, b, ...b, a, a, ...a, 0) and z = (x1, x2, ...xj , c, 0, 0, ...0, d) where j, c, and d are chosen so that
D1(x, y) = D1(x, z). Then as k →∞ and ε→ 0 we have D2(x, y)/D1(x, y)→ the least possible and
D2(x, z)/D1(x, z)→ 1. Figure 12 illustrates trends. This example relies on several things; if any of
these do not hold, tighter bounds are possible. First, it relies on the dimension k being large, and
(second) the availability of zero components in x. Third, it relies on xi ≈ yi and hence (fourth) D1

being small.

However, one can get fairly close to this worst case without being very extreme, as observed from
the large flat section of the z-ratio curves in Figure 9, as long as we keep the availability of zero (or
near-zero) components to provide points where the ratio is near 1.

k ε a b 4s
JS
4s

JS
4s

H2
s

4s

H2
s

4s
JS

H2
s

JS
H2

s

JS

(x, y) (x, y) (x, z) (x, y) (x, z) (x, z′) (x, y) (x, z′)
∞ → 0 → 0 → 0 → 0 .721 1 .5 1 → 0 .693 1
5 .01 .26 .24 .00160 .7215 .998 .5002 .997 .00115 .6932 .9989
5 .08 .33 .17 .102 .73 .91 .51 .83 .075 .70 .92
5 .16 .41 .09 .41 .78 .95 .57 .91 .320 .72 .97
9 .08 .205 .045 .41 .78 .998 .57 .997 .320 .72 .957

Figure 12: Near worst-case ratio constructions for contours.

For example, keeping only the second condition, choosing k = 5, ε = 0.08, gives x = (.33, .33, .17, .17, 0),
y = (.17, .17, .33, .33, 0), and z = (.33, .33, .042, .128). Here 4s(x, y) = 4s(x, z) = .102 and
JS(x, y) = 0.075, JS(x, z) = .094 and H2

s (x, y) = .053, H2
s (x, z) = .085 so JS(x, y)/ 4s (x, y) =

.73 ≈ 0.721, JS(x, z)/4s (x, z) = .91 ≈ 1, H2
s (x, y)/4s (x, y) = .51 ≈ 0.5, and H2

s (x, z)/4s (x, z) =
.83 ≈ 1.

Changing z = (.33, .33, .17, .060, .110) gives JS(x, y) = JS(x, z) = .075 andH2
s (x, y) = .053, H2

s (x, z) =
.069 so H2

s (x, y)/JS(x, y) = .70 ≈ 0.693, and H2
s (x, z)/JS(x, z) = .92 ≈ 1. Figure 12 describes

some other variations we have computed. The last three columns describe extreme ratios between
Hellinger-squared and Jensen-Shannon, for the same point y and a new point z′ equidistant from x
under Jensen-Shannon, z′ : JS(x, y) = JS(x, z′).
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5. Conclusions

We hope that our organization of properties is illuminating for those using distance functions over
mixture models, and will inspire further geometric analysis. The proofs are detailed so as to be easily
reproducible, which we thought would be useful given our attempts to find them in the literature
and the difficulty of combining log and square-root functions and various powers.

We have given an algebraic and geometric comparison of the components of 4s, JS, and H2
s .

We have factored these functions into more easily comparable forms, in the process illuminating
their dependence and behavior on features of the points. We have provided theoretical bounds on
componentwise ratios and differences, and provided concrete examples that nearly achieve the ratio
bounds. However, much work remains.

We have provided linear bounds on ratios JS/4s, etc., but the functional forms suggest it is
possible to derive tighter nonlinear bounds. For example, the similarity of contours 4s = c1 and
JS = c2 might depend on c1 and c2 and be closer together than the linear bounds enforce. Our
constructions show that getting close to the worst case ratios is fairly easy if some components are
near zero. It would be interesting to explore worst-case constructions where none of the components
are near-zero. We have not yet tried worst-case difference constructions.

We wish to explore further the geometric properties of the square root transformation in Hellinger.
Using the same types of arguments for 4s, JS, and H2

s , we speculate that we could develop similar
bounds between Hellinger, Euclidean, and two Geodesic distances. Other bivariate distances such as
the Jaccard index and Tanimoto coefficient are worth analyzing. We wish to explore these types of
comparisons for the multi-stage distances (e.g. Rubner et al. (1998)) and univariate distances (e.g.
Meilă (2003)).
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Appendix A. Data Model and Application Context

One interesting source of mixture models is the analysis of a corpus of text documents using statistical
techniques. For example, one might consider the corpus of math and computer science papers from
the last five years, and be interested in seeing how well this paper (the one you are reading now!)
clusters with the machine learning literature, or whether it is an outlier as the author suspects.

In order to answer such a question, one selects an appropriate model (an art full of choices) and
then uses a mathematical computer program to turn documents into data points in some space:
Latent Dirichlet Allocation and Latent Semantic Analysis are common choices. Next the points are
clustered. (In some contexts the output of LDA is considered clustered already by the largest topic
component.) But in order to cluster points (i.e. documents), some notion of distance between points
is required.

However, which of the many distance functions should you choose? Current practice is that
the distance function is chosen by some combination of four criteria. First, do you reproduce the
ground truth? This is only possible if ground truth is available and trustworthy. E.g. you might
consider the journal that a paper was published in as the ground truth of what cluster it belongs
in. Unfortunately this confounds the choice of distance function with the choices of methods and
other parameters. Second, you consider the stability of the outcome as in cross validation. Are
similar clusterings produced when some data are withheld, or the distance threshold is varied, etc.?
Third, you pick the distance function that has been historically used for your application domain.
Despite the obvious shortcomings, this facilitates evaluating new work, and leverages the insight your
application community has built up about your distance function. Fourth, you pick the distance
function based on information theory, the idea that the distance is measuring something relevant
such as entropy. This often coincides with historical application practice. This paper ignores all of
the above (very reasonable) criteria, and instead considers complementary and foundational first-
principles geometric and algebraic comparisons.

The computational geometry community has not historically focused on statistical distances,
except for image analysis (Rubner et al., 1998). Even there, the study is usually based on evaluating
the outcome as described above by the four criteria.

A.1 Other Uses of Distances

Clustering is a zero-dimensional structure, and distances can also be used to produce more nuanced
structures. Examples of higher dimensional discrete structures include building a graph: connect
two vertices with an edge if their distance is less than some threshold. Also building a simplicial
complex, adding a simplex spanning points contained in a ball as in the Čech complex. One can build
a whole family of discrete structures, filtered by an increasing distance threshold, as in persistent
homology (Zomorodian and Carlsson, 2004) or alpha-complexes.

A.2 Other Types of Distances

There are other distance types for collections of mixture models that are outside the scope of this
paper, but are worth mentioning.

Point-to-point distances can be conflated with some notion of distance (other than orthogonality)
between the coordinate axes or histogram bins, called “cross-bin similarity.” This is natural in the
setting of LDA, where each coordinate represents a topic, and the topics themselves reside as mixture
model points in a high-dimensional word space with meaningful distances between topics. Wan
(2007) has used the Earth Mover’s Distance in exactly this way for combining document similarity
with sub-topic similarity. The Earth Mover’s Distance (Peleg et al., 1989) a.k.a. Mallows Distance
(Levina and Bickel, 2001) forms a certain product of these distances after solving a linear program.
The Quadratic form (Hafner et al., 1995) is an alternative using a different product, without the
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linear program. Rubner et al. (2001) compares nine distances, including some cross-bin similarities,
in the application context of image comparisons; Barnum (2006) provides a nice slide summary.

Combining distances also arises in the setting where each point represents a structured histogram,
humans have selected the bins, and the meaning of the bins of the histogram are more or less related.
For example, in cybersecurity, one could build a histogram of features of packet headers. One might
want to assign the bin for “day of the week” to have a smaller distance to the bin for “time of day”
than the bin for “packet size.”

Meilă Divergence (Meilă, 2003) measures the similarity between partitions based on entropy and
mutual information. That is, it is useful to compare the quality of different clusterings, in contrast
to whatever distance and method was used to create the clusterings in the first place.

Univariate measures (i.e. for single points) have their uses as well. For example in community
detection, an entropy measure of a sub-graph may help one decide whether it is a community or
should be further subdivided, and it may not matter how the entropy of two disjoint subgraphs
compare.

A.3 Model Generation

Recall the problem of determining the relationship of this paper (document) to others in a corpus of
journal papers (documents). A document is considered to be composed of a collection of words: a
bag of words, where word order and grammar are ignored. Much art is devoted to selecting the words
to keep. For example, one might throw away common words like “the.” One might retain just the
stem of words, obviously helpful for ignoring tense, but also emphasizing word roots and meaning
by treating “weighting,” “unweighted,” and “weightier,” all as “weight.” The retained words in the
bag are then weighted to produce entries in a document-word matrix C. Weighting is also an art,
e.g. weights equal to frequency of occurrence are not as distinguishing as weights equal to entropy
of occurrence. These approaches have proven very effective, despite the obvious information loss.

A.4 Statistical Model, LDA

Figure 13: LDA implied Bayesian hierarchical structure. Theta and Phi are from Dirichlet distribu-
tions parameterized by multivariate alpha and beta: θ ∼ Dir(α), φ ∼ Dir(β). The goal
is to discover the unobserved circled quantities from the observed ones. Figure courtesy
of Robinson (2010).

Latent Dirichlet Allocation (LDA) takes this document-word matrix C (corpus) and produces a
topic-word matrix φ (which we will ignore) and a document-topic matrix θ (our data); see “Prob-
abilistic Latent Semantic Analysis” in Figure 14 and Robinson (2010). Each document-column of
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θ is a mixture of topics, the contribution of each topic to that document. The matrix product φθ
gives the probability distribution over the vocabulary. This is in contrast to an approximation of
the word counts.

LDA assumes a hidden generative model. The topics are hidden variables. The “true” underlying
hidden model for each document is assumed to be a sequence of topics, of length equal to the number
of words in that document. Topics may be repeated in this sequence. Each topic instance in the
sequence randomly generated one of its words and contributed it to the document; these words are the
observed data (Hofmann, 1999). (Despite the document word order being ignored, the correlations of
the probability model recapture some word context.) This gives a hierarchical Bayesian framework;
see Figure 13. Further, the model assumes that θ and φ come from a Dirichlet distribution, hence
the name LDA.

Given this LDA model, a statistical computer program is used to take the observed words and
discover (estimate) the hidden topics, both their presence in the documents θ and the probabilities
with which they generated each word φ. Approximate inference methods for LDA is an active area
of research with a large literature. Gibbs sampling is a popular way to accomplish the estimation
process.
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Figure 14: LDA (pLSA) and LSA derivations. Figure courtesy of Robinson (2010).

A.5 Algebraic Model, LSA

Other methods also produce geometrically similar output. The linear-algebra (non-statistical) tech-
nique Latent Semantic Analysis (LSA) (Berry et al., 1995) starts with similar input, a corpus of
documents. A document-by-word (weighted) incidence matrix C (corpus) is formed as before. A
singular value decomposition (SVD) produces several matrices; see Figure 14. Here C is well-
approximated by the matrix products. For the word by concept matrix, columns are orthogonal
concept vectors in word-space, with both positive and negative entries; in contrast, the topics from
LDA are not orthogonal and have only non-negative entries. For the document by concept matrix,
each row is the (positive and negative) coordinates of a document in concept-space. Documents
in topic-space are often compared using cosine similarity. This measures the angle at the origin
between points.
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